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Abstract
We show that lattice Boltzmann simulations can be used to model the radiation
force on an object in a standing wave acoustic field and comparisons are made
to theoretical predictions. We show how viscous effects change the radiation
force and predict the motion of a particle placed near a boundary where viscous
effects are important.

PACS numbers: 43.25.+y, 43.35.+d, 62.60.+v, 05.50.+q

1. Introduction

The radiation force on an object in a sound field is the total time-averaged force on the object
in an acoustic field. It is a non-linear effect which is produced by momentum transfer from
the wave to the object [1–6].

The radiation force on an object has a number of applications: it can be used to measure
the power output from an ultrasonic transducer [7]. It is used in ultrasonic levitation to
suspend droplets in air to study effects such as heat transfer [8, 9]. It is also being studied in
microfluidic applications to manipulate particle so that a higher concentration can be achieved
over any sensors or active areas [10, 11]. The reasons behind this behaviour are unclear,
and to understand and control the particle motion, it is important to better characterize the
time-averaged force. For a few simple systems, the time-averaged force has been determined
analytically. However, for more complex systems, analytical solutions are likely to prove
difficult, so modelling methodologies need to be found. The aim of this paper is to describe
one such approach, a lattice Boltzmann simulation, which can predict the radiation force from
a direct solution of the Navier–Stokes equations.

For a rigid object which is not deformed by the sound field, the radiation force is produced
by the time-averaged pressure [12], the drag on the object due to acoustic streaming [12] and
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a component due to any harmonic movement of the object in the sound field [13]. For small
objects, much smaller than the wavelength, in a standing wave field the radiation force pushes
the object towards either the pressure or velocity anti-node depending on the density and
compressibility of the object.

Conventionally, the acoustic boundary layer thickness β−1 is assumed to be small
compared to the dimensions of any particle or object, where β−1 = √

2ν/ω, ν is the kinamatic
viscosity of the fluid, and ω is the angular frequency of the wave. Here the solution is greatly
simplified by assuming the fluid is inviscid and the viscous effects such as streaming can
be neglected [12, 14]. There are, however, a number of applications where this assumption
is typically violated, for example in microfluidics. In these cases viscous effects such as
streaming must be included [14].

King was one of the first to analyse the radiation force [4]. He published a landmark
paper describing the radiation force on a sphere due to wave propagation in an inviscid
fluid. He derived a formula for the second-order pressure and calculated the radiation force
due to a standing wave and a travelling wave. Most studies presented have only considered
spherical objects, but there have been a few investigations into the radiation force on a cylinder.
These considered an inviscid fluid where the cylinder is free to move in the acoustic field.
Awatani was probably the first to calculate the radiation force on a cylinder in 1954 [15].
He presented calculations for the variation in the force on a rigid cylinder due to a travelling
wave field. He also claimed to have calculated the radiation force for a standing wave but on
inspection the wave propagates in the x-direction. In 1988 and 1993 Hasegawa et al [16, 17]
published calculations for elastic cylinder spherical shells and cylindrical shells in a travelling
wave field. In 1990 Wu et al also produced an analytical study which was compared to
experimental results [18]. They found an agreement to within 20%, but their calculation was
for two incident waves rather than an incident and scattered wave. Ebenezer and Stepanishen
presented two papers using numerical solutions to the radiation force for a cylinder that is
vibrating at an arbitrary number of natural frequencies [19, 20]. In 2004 Townsend et al used
the ODE solver within MATLAB to calculate the position of particles subject to a standing
wave and steady laminar flow not induced by the sound wave [21]. In 2004 Cosgrove et al
[22] simulated the motion of particles in a sound field using lattice Boltzmann simulations
and compared the results to the predictions by Wu [18]. However, the Wu theory does not
accurately model a particle in a standing wave [23] and their results appear to show significant
deviations from the theoretical predictions. They also do not consider the effects of acoustic
streaming.

Recently, Haydock and Yeomans [23–25] used a lattice Boltzmann algorithm to model
acoustic streaming. Both the radiation force and acoustic streaming are essentially produced
by the same mechanism: a time-averaged momentum transfer from the wave. For acoustic
streaming the momentum transfer is to the fluid, and generally produces a steady flow, whereas
for the radiation force the momentum transfer leads to a time-averaged force on an object
[1, 3–6, 26]. Here we compare lattice Boltzmann simulations to a more accurate theory than
that used by Cosgrove et al for a standing wave, and we consider the effects of viscosity
and the size of the simulation when making the comparison. We show that it can be used to
predict both the time-averaged force and motion for complicated systems, where analytical
investigations are not possible, and where viscous effects, such as acoustic streaming, cannot
be ignored. This work formed part of a DPhil thesis [23].

In the next section we introduce the lattice Boltzmann approach. In section 3 we compare
the simulation results with theoretical predictions for a cylinder fixed in space. In section 4 we
consider the motion of a cylinder free to move in the standing wave acoustic field. In section 5
we present our concluding comments.
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Figure 1. Lattice vectors for the lattice Boltzmann model.

2. The lattice Boltzmann algorithm

The lattice Boltzmann model we use is the single-relaxation-time Bhatnagar–Gross–Krook
(BGK) scheme on a two-dimensional square lattice [27]. Lattice vectors are

ei = (
cos

{
1
4π(i − 1)

}
, sin

{
1
4π(i − 1)

})
, i = 1, 3, 5, 7

ei = (√
2 cos

{
1
4π(i − 1)

}
,
√

2 sin
{

1
4π(i − 1)

})
, i = 2, 4, 6, 8

together with a zero velocity vector e0 = (0, 0) as shown in figure 1. A set of partial densities,
fi(x, t), associated with each lattice direction i are defined on each lattice site x. These are
related to the physical variables, density ρ(x, t), and velocity u(x, t) by

∑

i

fi(x, t) = ρ(x, t),
∑

i

fi(x, t)ei = ρ(x, t)u(x, t). (1)

The partial densities evolve with time t according to

fi(x + ei , t + 1) − fi(x, t) = 1

τ

(
fi − f 0

i

)
(2)

where the local equilibrium distributions are

f 0
i = ρwi

{
1 + 3ei · u + 9

2 (ei · u)2 − 3
2u2

}
, i = 1, 2, . . . , 8, (3)

with w1 = w3 = w5 = w7 = 1/9 and w2 = w4 = w6 = w8 = 36 and

f 0
0 = ρ

{
4
9 − 2

3u2
}
. (4)

In equation (2), the left-hand side corresponds to the propagation step, where momentum is
transferred, and the right-hand side represents the relaxation process which determines the
viscous properties of the fluid. In the continuum limit a Chapman–Enskog expansion of the
numerical scheme reproduces the Navier–Stokes equations [27]:

∂tρ + ∂αρuα = 0 (5)
∂tρuβ + uβ∂αρuα + ρuα∂αuβ = −∂αP + ρν∂α[∂βuα + ∂αuβ] (6)

with pressure P = ρ/3, kinematic viscosity ν = (2τ − 1)/6 and speed of sound c0 = 1/
√

3.
The boundary conditions used for non-slip walls was the bounce back boundary condition

[28] as used in our previous simulations [23–25]. For the particle we use the Ladd moving
boundary conditions [29].
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Table 1. Parameters used in lattice Boltzmann simulations of the radiation force on a fixed
cylinder. Lx and Ly are the dimensions of the simulation in the x and y directions respectively, λ is
the wavelength, h is the distance from the acoustic source, a is the radius of the cylinder, τ is the
relaxation time, ω is the angular frequency and ν is the kinematic viscosity.

Lx = λ Ly h a τ ω ν

1000 100 375 5 1 0.0036 0.167
1000 100 375 10 1 0.0036 0.167
1000 200 375 20 1 0.0036 0.167
1000 200 375 40 1 0.0036 0.167
1000 500 375 80 1 0.0036 0.167

500 100 186 10 1 0.0073 0.167
200 100 75 10 1 0.0182 0.167

1000 100 375 10 0.502 0.0036 0.000 67
1000 100 375 10 0.52 0.0036 0.006 67
1000 100 375 10 0.8 0.0036 0.1

3. Radiation force on a fixed cylinder

We first consider a rigid cylinder which is fixed in space. This allows us to compare the
simulated radiation force with the theoretical predictions without the added complexity of
considering the motion of the particle. We use the inviscid theory developed by Haydock [30].

3.1. Choice of parameters

We now describe the choice of parameters used to simulate the radiation force on a fixed
cylinder. The theory we use is for an inviscid fluid which is valid when β−1 � a [14].

The choice of parameters will inevitably be a compromise as (βa)−1 → 0. Lattice effects
become more important as ν → 0. This reduces the accuracy of the lattice approximation
of a cylinder [23]. a → ∞ requires a compromise between the computational cost through
increasing the size of the lattice, and boundary effects. ω is also constrained because we require
that λ � a so that the force changes with position (the force varies with period 2ω) and to
minimize any errors due to the rapid change in velocity potential at the cylinder boundary.

Therefore, we consider simulations of length Lx = λ, and width Ly with the properties
detailed in table 1. In each case the particle was placed at a maximum in the radiation force
(h = 3λ/8) where h is the distance from the acoustic source. These parameters allow us to
assess how the simulated radiation force and theoretical prediction converge as (βa)−1 → 0.
They also allow us to determine how changes in the viscous effects due to changes in a, λ and
τ affect the radiation force.

We consider a standing wave acoustic field with periodic boundary conditions at all
boundaries. The wave is initialized as ρ = ρ0 + 
ρ1 cos(kx), u = 0, 
ρ1 = 0.01 and
maintained by setting the partial densities at x = 0 to the equilibrium distribution function (3)
and (4) with ρ = ρ0 + 
ρ1 cos(ωt) [23–25].

3.2. Effect of particle radius, wavelength and viscosity on the radiation force

Details of the comparison between the simulations and theoretical predictions of the radiation
force are given in table 2 for the variation in force with particle radius, table 3 for the variation
in force with viscosity and table 4 for the variation in force with wavelength. The variation
in the percentage difference in the radiation force between the theory and simulations with
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Table 2. Effect of particle size on the radiation force. λ = 1000, τ = 1, ν = 0.167. Fth: theoretical
radiation force, FLB: simulation radiation force.

a (βa)−1 Fth (10−5) FLB (10−5) Difference (10−5) Difference (%)

5 1.9 −1.24 −3.04 −1.81 146
10 0.96 −4.95 −8.2 −3.26 66
20 0.48 −19.79 −25.12 −5.33 27
40 0.24 −77.85 −81.02 −3.18 4
80 0.12 −265.7 −247.2 18.4 −6.9

Table 3. Effect of viscosity on the radiation force. a = 10, λ = 1000. Fth: theoretical radiation
force, FLB: simulation radiation force.

T ν (βa)−1 Fth (10−5) FLB (10−5) Difference (10−5) Difference (%)

1 0.167 0.97 −4.95 −8.2 3.26 66
0.8 0.1 0.75 −4.95 −7.66 2.71 55
0.52 0.006 67 0.19 −4.95 −5.9 −0.98 20
0.502 0.000 67 0.06 −4.95 −5.49 −0.54 11

Table 4. Effect of wavelength on the radiation force. a = 10, τ = 1, ν = 0.167. Fth: theoretical
radiation force, FLB: simulation radiation force.

λ (βa)−1 Fth (10−5) FLB (10−5) Difference (10−5) Difference (%)

1000 0.96 −4.95 −8.2 −3.26 66
500 0.68 −9.9 −13.5 −3.6 36
200 0.43 −23.77 −24.4 −0.6 2.7

(βa)−1 is shown in figure 2. We emphasize that we do not expect exact agreement with the
theory since the simulations necessarily contain viscous contributions to the radiation force
and attenuation of the acoustic wave, and the theory itself is not exact.

Consider first table 2. We set ν = 0.167, λ = 1000 and vary the particle radius a from 5 to
80. This corresponds to values of (βa)−1 from 1.9 to 0.12. As (βa)−1 reduces the simulated
force approaches the theoretical result, but there is a small overshoot for the largest radius
considered. This may be due to spurious boundary effects as the particle radius becomes
large, approaching the size of the simulation box. To investigate this figure 3 (λ = 1000,
ν = 0.167, a = 80) shows the density variation of the fluid for the largest radius considered.
The distortion in the first-order wave created by the largest particle does appear to reach the
boundary confirming that a larger simulation is required. However, there are other possible
causes for the overshoot: for example, the approximations in the theory assumes λ � a. This
could lead to an overprediction of the radiation force.

In table 3 we present results for a = 10, λ = 1000, and variations in viscosity from
0.167 to 0.000 67. This corresponds to values of (βa)−1 from 0.97 to 0.06. The percentage
difference between the theory and simulation decreases smoothly as (βa)−1 → 0. However,
as the viscosity is lowered errors due to finite lattice effects will become more pronounced, so
we do not expect exact agreement as (βa)−1 → 0.

In table 4 we present the results for a = 10, ν = 0.167, and variations in wavelength from
1000 to 200. This corresponds to values of (βa)−1 from 0.96 to 0.43. The percentage difference
between theory again reduces as (βa)−1 reduces, but looks as though it will significantly
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Figure 2. Percentage difference in radiation force between theory and the simulations as a function
of (βa)−1. Solid line (◦): changing the particle radius a, (+) dashed line: changing the viscosity,
(∗) dashed and dotted line: changing the wavelength.

Figure 3. First-order density variation (τ = 1, Lx = 1000, Ly = 500, a = 80, h = 375). Black: low
density through to white: high density.

overshoot as (βa)−1 → 0. However, the theory assumes that ka � kh which will not be
true when λ → a, so the theory will not be accurate as (βa)−1 → 0 through changing the
wavelength. We note for (βa)−1 = 0.43 that the theoretical and simulated results are almost
equal. We believe that this is a result of a coincidental balance of viscous effects. These will
be explained shortly.

As we increase (βa)−1 the viscous effects become more important [14], which will lead to
a discrepancy between the model and the theoretical prediction. The inviscid theory considers
scattering from the particle. However, in a real viscous fluid, momentum is transferred in the
boundary layer [12, 14]. Part of this momentum transfer is converted into acoustic streaming,
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(a)

(b)

Figure 4. Acoustic streaming velocity around the cylinder for the Lx = 200, Ly = 100, τ = 1,
a = 10 simulation. (a) Velocity vector plot, (b) magnitude of streaming velocity.

and the remainder into a time-averaged pressure [12, 14]. This generally leads to a radiation
force which is greater than the inviscid prediction [12, 14]. There can also be a contribution
due to acoustic streaming which is created away from the particle [11, 14]. Figure 2 and
tables 2 to 4 indeed show that the simulations predict large discrepancies due to the increased
viscous contribution to the radiation force. However, the increase is not simply a function of
(βa)−1.

For a standing wave where the particle is positioned away from the nodes or anti-nodes,
the field will not be symmetrical about the particle [23]. All the particles in this section are
positioned mid-way between a pressure and velocity node (h = 3λ/8). This can produce a
more complex streaming pattern than typically considered in analytical predictions [1].

Consider the streaming field around the particle radius a = 10 when λ = 200 (ν = 0.167,
(βa)−1 = 0.43) shown in figure 4. This shows an asymmetric streaming profile which opposes
the time-averaged pressure. For this simulation the radiation force is surprisingly close to the
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(a)

(b)

Figure 5. Acoustic streaming velocity around the cylinder for the Lx = 1000, Ly = 200, τ = 1,
a = 20 simulation. (a) Velocity vector plot, (b) magnitude of the streaming velocity.

theoretical prediction for an inviscid fluid (table 4) despite (βa)−1 being reasonably high. If
we now compare this with a simulation with a similar simulation with (βa)−1 = 48 for a
particle radius a = 20 when λ = 1000 (ν = 0.167) in table 2, the streaming field (figure 5)
is approximately symmetric and we find that the predicted radiation force is higher. This
is because the radiation force has not been reduced by the effects of asymmetric acoustic
streaming. These effects will make determining radiation force a complicated problem when
viscosity is important.

4. The effects of radiation force on a cylinder free to move in the sound field

In the previous section we showed that the lattice Boltzmann scheme can simulate the radiation
force on an object. We also showed how viscous effects can add to this force, making analytical
predictions very difficult.

In this section we will consider how the radiation force affects the time-averaged motion
of a cylinder in a standing wave field. We will first consider the simplest case where the particle
is placed in an infinite periodic field so that boundary effects do not need to be considered.
For this simulation we can use theoretical predictions to determine how the particle will move.
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Figure 6. (a) Time-averaged particle position, (b) time-averaged particle velocity (Lx = 200,
Ly = 100, τ = 0.6, a = 10, ρ0 = 1, ρ1 = 100).

We will then simulate a more complex situation where a particle is placed near a boundary in
a viscous fluid. This motion would be difficult to predict analytically.

4.1. Periodic boundaries

In this section we will demonstrate that lattice Boltzmann simulations of the radiation force
on a free particle produce the motion predicted by theory. Once the particle is free to move we
cannot measure the radiation force as this will be balanced by the time-averaged drag force
on the particle due to its motion.

We choose the parameters Lx = λ = 200, Ly = 100, τ = 0.6 (ν = 0.0333), h = 3λ/8,
a particle density ρ1 = 100 and a particle radius a = 10. This gives (βa)−1 = 0.19, so the
viscous effects should be small. We have not included gravitational effects in the simulations,
so the particle motion will only be due to the acoustic field. Using the theoretical predictions
by Haydock [30] for an inviscid fluid the particle should be forced to the pressure nodes
h = λ/4.

Figure 6 shows the simulation results for the position of the particle in the x-direction, and
the particle velocity as a function of time. As expected the particle moves to the pressure node.
However, its momentum is sufficiently high that it overshoots the node producing a classic
underdamped response. If the mass of the particle is reduced or the viscosity is increased the
damping is increased as expected.

4.2. Effects of boundaries

In this section we use the lattice Boltzmann scheme to predict the motion of a particle which
is placed close to a boundary in a viscous fluid. We choose a simulation with parameters
Lx = λ = 1000, Ly = 100, τ = 1 (ν = 0.167), a = 5, and place the particle at h = 3λ/8
and ly = 5 where ly is the initial distance from the wall at y = 0. We also increase the
amplitude of the wave to 
ρ1 = 0.02. We expect the time-averaged motion of the particle to
be due to a combination of the following forces: the time-averaged pressure described by the
inviscid theory, an additional time-averaged pressure due to momentum transfer in the viscous
boundary layer, a force due to any local streaming forces generated by the particle and a force
due to Rayleigh streaming generated at the boundaries (y = 0, y = Ly) [1, 14, 23, 24].
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Figure 7. (a) Time-averaged x-coordinate of the particle, (b) time-averaged y-coordinates of the
particle, (c) schematic of the time-averaged particle position (Lx = 1000, Ly = 100, τ = 1, a = 5,
ρ0 = 1, ρ1 = 100).

Figure 8. Snapshots of the streaming profile as the particle moves away from the boundary at
y = 0.
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The particle was placed at a maximum of both the inviscid radiation force and the x-
component of the expected Rayleigh streaming produced by a standing wave between parallel
plates. The time-averaged pressure due to a standing wave without the presence of boundaries
would lead to a force which would move the particle from x = h to x = λ/4 (figure 6).
Rayleigh streaming would lead to a time-averaged drag force which would initially move the
particle from x = h towards x = λ/2 and then to the centre of the channel.

Figure 7 shows the particle position as a function of time. The figures show that the
particle is unexpectedly driven away from the non-slip boundary, which is not due to either
Rayleigh streaming or the radiation force seen without boundaries. To explain this we consider
figure 8, a series of time averages of the Lagrangian velocity field as the particle moves away
from the surface. Close inspection of the streaming velocities produced in the vicinity of the
particle shows that most of the acoustic streaming is due to the interaction of the wave with the
particle rather than the plate surface. We see the formation of the typical four-vortex streaming
pattern seen around a cylindrical object. However, while the object is close to the boundary
only two of the inner vortices are produced. This appears to pull the particle away from the
surface. Once the particle has moved from the surface, the additional vortices are produced
and the drag force due to streaming appears to be balanced.

5. Relating the models to the real world

To relate the non-dimensional lattice Boltzmann parameters u, x, t, ν and F to real-world
parameters u′, x′, t ′, ν ′ and F′, we use a characteristic velocity V and length L of the real
system as follows: u′ = V u, x ′ = Lx, t ′ = (L/V )t , ν ′ = V Lν, F′ = (ρV 2/L)F, V = c′

0/c0.
If we consider a wave propagating in air assuming international standard atmosphere properties
at sea level [31] (c′ = 340 ms−1, ρ ′

0 = 1.2 kg m−3, ν ′ = 1.4 × 10−5 m2 s−1) and choosing ν =
0.167 then V = 588.9 ms−1, and L = 1.43 × 10−7. The simulation used to model the boundary
effects in section 4.2 has real parameters f ′ = 2.4 MHz, L′

x = 0.14 mm, L′
y = 14.3 µm,

a′ = 0.71 µm the intensity of the wave I ′ = 9.43 kW m−2 (I ′ = 0.943 W cm−2), and each
time step represents 0.24 ns.

6. Conclusions

We have shown that the lattice Boltzmann modelling methodology can be used to quantitatively
simulate the radiation force on an object in an acoustic field. We have also demonstrated that
we can use the Ladd moving boundary conditions to predict the motion of a particle with a
density greater than the surrounding fluid.

We have demonstrated that in line with theoretical prediction, the simulations generally
show that viscous effects increase the radiation force on an object. However, this is complicated
by the acoustic streaming effects which not only reduce the amount of momentum transferred
to the time-averaged pressure P2 but can also reduce the radiation force due to the asymmetric
streaming profile that is produced away from the velocity or pressure nodes.

We have shown that the simulations can be used to predict the motion of particles when
the geometry is too complicated for analytical theories. We demonstrated this by simulating
the motion of a particle placed at a non-slip boundary. The effects of streaming caused the
particle to be removed from the surface.

We have not considered the motion of particles which have a density either close to or
lower than the surrounding fluid. This may be difficult using the Ladd boundary conditions as
they are known to overpredict the density under these conditions.
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We believe that it should be relatively easy to extend the methodology to simulate the
radiation force on multiple particles. In addition to determining force the boundary conditions
also include the effects of torque, so the simulations will automatically include radiation torque
effects when shielding between the particles leads to a force which does not act through the
centre of mass.
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